

MAX1000

Nios II Soft Core Lab

Please read the legal disclaimer at the end of this document.

Revision 1.0

MAX1000 P a g e | 2 www.arrow.com

Nios II Soft Core Lab August 2017

Contents
1. Introduction .. 3

2. Getting Started ... 4

3. Examine the System Design ... 5

4. Nios II Soft Core .. 6

5. Examine the MAX1000 Development Platform ... 7

6. Implementing Nios II soft core in MAX1000 .. 7

6.1 Create a New Quartus Prime Project ... 8

6.2 Build the Hardware Design ... 10

6.3 Build the Software Design .. 44

7. Revisions ... 53

8. Legal Disclaimer .. 54

MAX1000 P a g e | 3 www.arrow.com

Nios II Soft Core Lab August 2017

1. Introduction

This tutorial provides comprehensive information to help you understand how to create a

software project for a Nios II processor system in an Intel FPGA and run the software project on

your MAX1000 board. The Nios II processor core is a soft intellectual property (IP) processor that

you download (along with other hardware components that comprise the Nios II system) onto an

Intel FPGA. This tutorial introduces you to the basic software development flow for the Nios II

processor.

Lab Overview: This lab teaches you how to create an embedded system implemented in

programmable logic. You will build a processor-based hardware system

and run software on it. As the lab progresses, you will see how quick and

easy it is to build entire systems using Quartus Qsys tools to configure and

integrate pre-verified IP blocks.

Project Details: The lab will guide you through creating an embedded system using Qsys.

This system will be able to retrieve data from the on-board accelerometer

of the MAX1000. Depending on the data received by the Nios II processor,

the LEDs will react to the Y-axis.

Lab Notes: Many of the names that the lab asks you to choose for files, components,

and other objects in this exercise must be spelled exactly as directed. This

nomenclature is necessary because the pre-written software application

includes variables that use the names of the hardware peripherals.

Naming the components differently can cause the software application to

fail. There are also other similar dependencies within the project that

require you to enter the correct names.

MAX1000 P a g e | 4 www.arrow.com

Nios II Soft Core Lab August 2017

2. Getting Started

The first objective is to ensure that you have all the necessary hardware items and software

installed so that the lab can be completed successfully. Below is a list of items required to

complete this lab:

- MAX1000 Board

- USB Cable

- Lab Files: https://wiki.trenz-electronic.de/display/PD/MAX1000

o max1000_nios_template: Template files required to complete the project.

Includes: nios_lab_top.vhd, nios_lab_top.qsf, nios_lab_top.sdc, RESET_GEN.vhd

o max1000_nios_completed: Completed archived project with the Software files

for Nios II Eclipse IDE.

- Quartus Prime 17.0 Lite was used for this lab. Previous versions should work (If no Quartus

Prime is installed, refer to MAX1000 User Guide for instructions)

- Installed Arrow USB Drivers (If not, refer to MAX1000 User Guide for instructions)

- Personal computer or laptop running 64-bit Linux / Windows 7 or later with at least an

Intel i3 core (or equivalent), 4GB RAM and 12 GB of free hard disk space

- A desire to learn!

MAX1000 P a g e | 5 www.arrow.com

Nios II Soft Core Lab August 2017

3. Examine the System Design

Overview: In this section, you will examine the design flow used in modern Intel FPGA designs.

Examine the Design Tool Flow

Developing software for an embedded system on a programmable chip requires an understanding

of the design flow between the Qsys system integration tool and the Nios II Embedded

Development Suite (EDS). Typically, designs begin with requirements and become inputs to

system definitions. System definition is the first step in the design flow process. For this workshop,

the design will be built and then the FPGA image will be downloaded into the board. The objective

of the module is to review the development tools that will be used.

The above diagram shows the typical design flow for the system design. The system definition is

done with Qsys. The Nios II IDE uses the system description to create a new project for the

software application. The output of the FPGA design is a FPGA image that is used to configure the

FPGA. The output of the software flow is an executable which runs on the Nios II processor.

MAX1000 P a g e | 6 www.arrow.com

Nios II Soft Core Lab August 2017

4. Nios II Soft Core

The Nios II processor delivers unprecedented flexibility for your cost-sensitive, real-time, safety-

critical, ASIC-optimized, and applications processing needs. The Nios II processor supports all

Intel® FPGA and SoC families.

Two different versions available:

� NIOS II / f : License Fee, optimized for performance

� NIOS II / e : Royalty Free, optimized for low resource consumption

There is a variety configuration options to choose from depending on the application’s needs.

Nios II soft core supports a variety of ecosystems, with more information found at:

https://www.altera.com/products/processors/ecosystem.html

MAX1000 P a g e | 7 www.arrow.com

Nios II Soft Core Lab August 2017

5. Examine the MAX1000 Development Platform

There are plenty of components on the MAX1000 board that can be used including the LEDs, push

buttons, accelerometer, external flash/SDRAM, and headers for connecting various other

components through PMOD and Arduino MKR connections.

The completed system from completing the lab, will include many components including the Nios

II soft processor, JTAG/UART, on-chip memory, PLL, and a SPI interface. The system that will be

created in Qsys will use a library of re-usable IP blocks. Interconnect between components is

automatically done by Qsys. The system interconnect manages the dynamics bus-width matching,

interrupt priorities, arbitration and address mapping. The processor that is used, Nios II, is a full

featured processor that can even run operating systems such as Linux and etc. The following

sections of this document will guide you through the process of building a basic embedded

system.

6. Implementing Nios II soft core in MAX1000

MAX1000 P a g e | 8 www.arrow.com

Nios II Soft Core Lab August 2017

In this module, you will create a Quartus Prime project for your embedded system design and

create the software project to run on the Nios II processor.

We will be using Qsys to add and interconnect different components. The following components

will be included in our system:

- Clock source

- PLL

- Nios II Processor

- On-Chip Memory

- Parallel I/O (LED output)

- Parallel I/O (Accelerometer interrupt input)

- SPI (3-Wire Serial)

- System ID Peripheral

The complete system would look like this:

6.1 Create a New Quartus Prime Project

MAX1000 P a g e | 9 www.arrow.com

Nios II Soft Core Lab August 2017

6.1.1 Create a new project using the New Project Wizard. Click File � New Project Wizard.

6.1.2 Configure the New Project Wizard directory, name and top-level entity information:

- Specify the location of the lab files on your PC.

In this case, it was: C:\FPGA_Projects\MAX1000\MAX1000_nios_lab

- Specify the name of the project: max1000_nios_lab

- Specify the name of the top-level entity: nios_lab_top

Note: It is a common naming convention to include the word “top” in the top-level design

entity to make it clear and obvious which entity is at the top of the hierarchy.

6.1.3 Click Next.

6.1.4 On the Project Type page, select “Empty Project” and click Next.

6.1.5 Add source files to the project

Click on the button and browse into the lab files folder where you will locate the

three provided design files: nios_lab_top.vhdl, nios_lab_top.sdc and RESET_GEN.vhdl.

Select all of them and add them to the project directory.

Note: To see the sdc file, change file type filter to “All Files” (*.*).

Do not forget to click the Add button to add the files to the project directory.

6.1.6 Click Next.

MAX1000 P a g e | 10 www.arrow.com

Nios II Soft Core Lab August 2017

6.1.7 Specify Family and Device Settings

Rather than using the pull down menus to select the correct family, enter the part number in the

Name Filter text box.

The part number is 10M08SAU169C8G.

6.1.8 After making your selection, look at the kit and confirm that the part number marked on

your device matches your selection. Click Finish.

6.2 Build the Hardware Design

MAX1000 P a g e | 11 www.arrow.com

Nios II Soft Core Lab August 2017

Overview: In this module, you will use Qsys system integration tool to design your hardware

system. You will add standard and custom components, make interface

connections, assign clocks, set arbitrary levels of interrupts, and generate HDL for

the system.

6.2.1 Launch Qsys

Qsys is a high level system integration tool that allows you to quickly build a system using Altera’s

IP blocks as well as custom components. The tool automatically creates interconnect logic

between the components and allows for easy design use.

A Qsys is made up of several components and the automatically generated, high performance

interconnect between them. Qsys allows you to connect components on an interface level, rather

by signal by signal level. Qsys understands the different types of interfaces and will only allow

connections between interfaces of same type (i.e. a data master connects to a data slave, clock

source to clock sink, etc...).

6.2.1.1 Open Qsys: from the Quartus Prime window: Tools � Qsys.

6.2.1.2 In the new Qsys window, you should see a single Clock source component named clk_0 in

the System Components Tab. This tab shows all the components currently in your system.

6.2.2 Configure the Clock

MAX1000 P a g e | 12 www.arrow.com

Nios II Soft Core Lab August 2017

In this section, you will configure the clock input to your Qsys system. This clock will be fed to a

PLL to provide addition frequencies.

6.2.2.1 Double-click on the Clock Source component named clk_0. This will open the Parameter

editor window on the right side, which should look very familiar to the traditional

Megawizard windows.

6.2.2.2 Change the clock frequency parameter to 12MHz (12000000 Hz).

Ensure that the “Clock frequency is known” parameter is enabled.

Click the "X" on the Parameter tab to close the parameter window.

6.2.2.3 To rename the clock, right-click on the clock and select “Rename” or press CTRL+R.

Rename the clock to “clk12mhz” and press Enter.

6.2.2.4 Save the Qsys system. Click File � Save As and name your qsys system nios_sys.qsys. This

is the entity name by which you will be instantiating your Qsys system in the top level file.

Click Save.

6.2.3 Add an Avalon ALTPLL for the processor and peripherals

The Avalon ALTPLL peripheral instantiates the PLL that will generate the clock for our system.

MAX1000 P a g e | 13 www.arrow.com

Nios II Soft Core Lab August 2017

6.2.3.1 From the IP Catalog panel on the left side of the Qsys window, expand the menus for the

Basic Functions � Clocks; PLLs and Resets � PLL and select the “Avalon ALTPLL”.

6.2.3.2 Under “General/Modes” tab (Page 1) of PLL MegaWizard change the frequency of the

clock input to 12 MHz. This source is provided by the oscillator on the MAX1000 board.

Click Next to move to the next tab of the MegaWizard.

MAX1000 P a g e | 14 www.arrow.com

Nios II Soft Core Lab August 2017

6.2.3.3 “Inputs/Lock” tab (Page 2/11): Uncheck “Create an ‘areset’ input to asynchronously reset

the PLL” option.

Accept all other defaults.

6.2.3.4 Pages 3-5: Accept all defaults and click next until you reach the Output Clocks tab.

MAX1000 P a g e | 15 www.arrow.com

Nios II Soft Core Lab August 2017

6.2.3.5 On “c0 Core/External Output” (Page 6): Click “Enter output clock frequency”. Configure

c0 as 50 MHz output. To do that, select “Enter output frequency” and enter 50 MHz. This

clock will be used as the processor system clock, clocking the Nios II processor various

peripherals of the system. Click Next.

6.2.3.6 Click Finish. This will take you to the summary tab.

Click Finish again to close the Avalon ALTPLL MegaWizard

6.2.3.7 A component entitled “altpll_0” should appear under Module Name. Rename the Avalon

ALT PLL component to “pll”. (You can right click to bring up a menu with a rename option.)

Some errors and warnings will appear in the bottom console indicating that various ports

are not connected. Ignore these for now. We will address these connections in the

upcoming steps.

MAX1000 P a g e | 16 www.arrow.com

Nios II Soft Core Lab August 2017

6.2.4 Connect the incoming clock and reset to the PLL

Qsys needs to know what clock and reset sources to use as the input to the PLL component. The

clock and reset sources can come from an external source or from another component within the

Qsys system. In our case, we will be connecting them to an external clock and reset.

Click on the "System Contents" tab to return to the view of the components in our system. At this

point, there are two components, a "Clock Source" component that was in the system by default

when Qsys first launched and the "Avalon ALTPLL" component that we added in the first step.

The Clock Source component is a Qsys component which brings in a clock and reset source from

outside of the Qsys system. We will connect its nodes to the corresponding nodes of the Avalon

PLL component.

6.2.4.1 In the "Connections" column, hover over the connections and you will then be able to fill

in dots to make the connections.

6.2.4.2 Connect the “clk” Clock Output port of the Clock Source <clk12mhz> to the

“inclk_interface” of the <pll>. Similarly connect the “clk_reset” reset output port of the

Clock Source <clk12mhz> to the “inclk_interface_reset” of the <pll> component.

6.2.4.3 Click on the "Double-click to export" field next to Conduit and name it “pll_locked”. We

will be using this as one of the inputs of the external reset component.

Your resulting connections should look as follows:

6.2.4.4 Click on File � Save and save your work periodically as you continue through the design.

MAX1000 P a g e | 17 www.arrow.com

Nios II Soft Core Lab August 2017

6.2.5 Add a Nios II Processor

A CPU is needed to run the software applications.

6.2.5.1 From the IP Catalog panel on the left side of the Qsys window, expand the menus for the

Processors and Peripherals � Embedded Processors and select the Nios II Processor.

(Note: MAX10 devices do not support the Nios II (Classic) Processor. However, all code

developed on the classic version is fully forward compatible.)

6.2.5.2 Double-click on the name or click “Add..” to add the component to the system. The Nios

II parameter editor window will open.

6.2.5.3 In the Main tab, ensure that the “Nios II /e" option is selected.

6.2.5.4 The settings in the Vectors tab will be set in a later step so skip that for now.

Note that until these settings are applied, the following errors in the Qsys window are expected:

- Error: nios2_gen2_0: Reset slave is not specified. Please select the reset slave.

- Error: nios2_gen2_0: Exception slave is not specified. Please select the exception slave.

6.2.5.5 The settings in the other tabs are left as their defaults but feel free to explore the

parameter editor and see what settings can be applied to the Nios II. Click Finish.

Note: There will be errors related to clocks as well. This will be resolved in a few steps.

6.2.5.6 Rename the Nios II to “nios”.

MAX1000 P a g e | 18 www.arrow.com

Nios II Soft Core Lab August 2017

6.2.6 Configure clock source for the Nios II processor

At this point, there are 3 components in the system.

6.2.6.1 From the drop-down list in the Clock column, select and choose “pll_c0”. Note that we

made this connection with the connection dots in an earlier step.

6.2.6.2 Connect “reset” of the <nios> component to “clk_reset” of the <clk12mhz> component.

6.2.6.3 Also connect “data_master” of the <nios> component to “pll_slave” of the <pll>

component.

Your system should look as follows:

6.2.7 Add On-Chip Memory

Intel FPGAs provide internal on-chip memory blocks that can be used to build up an internal RAM

(or ROM) block of memory. In this lab, this provides Nios II with access to very low-latency, high

speed memory for executable code and variable storage.

6.2.7.1 In the IP Catalog panel, type “on-chip” in the search bar. You should see the On-Chip

Memory (RAM or ROM) appear under Basic Functions � On Chip Memory.

MAX1000 P a g e | 19 www.arrow.com

Nios II Soft Core Lab August 2017

6.2.7.2 Double click the component or select it and click "Add..." to add it to the system. The On-

Chip Memory parameter editor will open.

6.2.7.3 Change the total memory size parameter to 32768 bytes or type 32k and the field will

update.

6.2.7.4 Accept the defaults for the remaining fields and click Finish to add the component to the

system. Don’t worry about the errors, they will be resolved later in the lab.

6.2.7.5 Rename the component to “onchip_ram”.

6.2.7.6 Using the Clock column, change the clock input of the “onchip_ram” to pll_c0 clock

source.

MAX1000 P a g e | 20 www.arrow.com

Nios II Soft Core Lab August 2017

6.2.7.7 Using the Connections column, connect the “s1” Avalon Memory Mapped Slave interface

of the <onchip_ram> to the <nios> instruction_master and data_master.

6.2.8 Add the JTAG UART Peripheral

Many software developers like to have access to a debug serial port from the target to leverage

<printf> debugging, input control, log status information, etc. The JTAG UART connects to Nios II

processor to the debugger console in the Nios II IDE for easy debug and development using a

console interface.

6.2.8.1 In the IP Catalog search bar, type JTAG UART. You should see the JTAG UART peripheral

appear under Interface Protocols � Serial.

6.2.8.2 Double-click the component or select it and click "Add..." to add it to the system. The JTAG

UART parameter editor will open.

MAX1000 P a g e | 21 www.arrow.com

Nios II Soft Core Lab August 2017

6.2.8.3 Verify that the parameters for the Write and Read FIFO are the same as below.

6.2.8.4 Click Finish to add the component to the system. Don’t worry about the errors; they will

be addressed later.

6.2.8.5 Rename the component to “jtag_uart”.

6.2.8.6 Connect the Avalon_jtag_slave_port of the <jtag_uart> to the data_master of the <nios>.

6.2.8.7 In the clock column, select pll_c0 as the Clock Input.

6.2.8.8 Connect the irq port of the <jtag_uart> to the irq of the <nios> processor.

MAX1000 P a g e | 22 www.arrow.com

Nios II Soft Core Lab August 2017

At this point, there are 5 components in the system and should look as follows:

6.2.9 Add SPI Interface

To make a connection with the on-board accelerometer of the MAX1000, an SPI interface

connection is needed.

6.2.9.1 In the IP Catalog panel, type “spi” in the search bar. You should see the SPI (3 Wire Serial)

appear under Interface Protocols � Serial.

6.2.9.2 Double-click the component or select it and click "Add..." to add it to the system. The SPI

(3 Wire Serial) parameter editor will open.

6.2.9.3 Change the SPI Clock rate (SCLK) to 1 MHz or type 1m and the field will update.

MAX1000 P a g e | 23 www.arrow.com

Nios II Soft Core Lab August 2017

6.2.9.4 Accept the defaults for the remaining fields and click Finish to add the component to the

system. Don’t worry about the errors, they will be resolved later in the lab.

6.2.9.5 Rename the component to “spi_lis3dh”.

6.2.9.6 In the clock column, select pll_c0 as the Clock Input.

6.2.9.7 Connect the spi_control_port of the <spi_lis3dh> to the data_master of the <nios>.

6.2.9.8 In the clock column, select pll_c0 as the Clock Input.

6.2.9.9 Connect the irq port of the <spi_lis3dh> to the irq of the <nios> processor.

6.2.9.10 Finally, click in the "click to export" field next to the external_connection Conduit and

name it “spi_lis3dh”.

MAX1000 P a g e | 24 www.arrow.com

Nios II Soft Core Lab August 2017

6.2.9.11 At this point, there are 6 components in the system and should look as follows:

6.2.10 Add PIO Peripheral for Accelerometer Interrupts

The LIS3DH accelerometer has two interrupt pins. You can use an input PIO peripheral so the

processor can detect when those interrupts are triggered

6.2.10.1 In the IP Catalog panel, type “pio” in the search bar. You should see the PIO (Parallel I/O)

appear under Processors and Peripherals � Peripherals.

6.2.10.2 Double-click the component or select it and click "Add..." to add it to the system. The

PIO (Parallel I/O) parameter editor will open.

MAX1000 P a g e | 25 www.arrow.com

Nios II Soft Core Lab August 2017

6.2.10.3 Set the width to 2 bits. Ensure that the direction is Input.

6.2.10.4 Make sure Synchronous Capture is enabled along with RISING as the Edge Type, under

Edge capture register.

6.2.10.5 Make sure Generate IRQ in enabled along with EDGE as the IRQ Type, under Interrupt.

6.2.10.6 Accept the defaults for the remaining fields and click Finish to add the component to the

system. Don’t worry about the errors, they will be resolved later in the lab.

6.2.10.7 Rename the component to “pio_lis3dh”.

6.2.10.8 In the clock column, select pll_c0 as the Clock Input.

6.2.10.9 Connect the s1 of the <pio_lis3dh> to the data_master of the <nios>.

6.2.10.10 Connect the irq port of the <pio_lis3dh> to the irq of the <nios> processor.

6.2.10.11 Finally, click in the "click to export" field next to the external_connection Conduit and

name it “pio_lis3dh”.

MAX1000 P a g e | 26 www.arrow.com

Nios II Soft Core Lab August 2017

6.2.11 Add PIO peripheral for LEDs

The MAX1000 has 8 LEDs on it. You can drive those LEDs with an output PIO peripheral.

6.2.11.1 In the IP Catalog panel, type “pio” in the search bar. You should see the PIO (Parallel I/O)

appear under Processors and Peripherals � Peripherals.

6.2.11.2 Double-click the component or select it and click "Add..." to add it to the system. The

PIO (Parallel I/O) parameter editor will open.

6.2.11.3 Set the width to 8 bits. Ensure that the direction is Output.

6.2.11.4 Accept the defaults for the remaining fields and click Finish to add the component to the

system. Don’t worry about the errors, they will be resolved later in the lab.

6.2.11.5 Rename the component to “pio_leds”.

6.2.11.6 In the clock column, select pll_c0 as the Clock Input.

6.2.11.7 Connect the s1 of the <pio_leds> to the data_master of the <nios>.

MAX1000 P a g e | 27 www.arrow.com

Nios II Soft Core Lab August 2017

6.2.11.8 Finally, click in the "click to export" field next to the external_connection Conduit and

name it “pio_leds”.

6.2.12 Add a System Peripheral ID

This is a VERY IMPORTANT peripheral to have in your system. It allows the Nios II development

tools to validate that the software application is being built for the correct hardware system.

6.2.12.1 In the IP Catalog panel, type “system id” in the search bar. You should see the System

Peripheral ID appear under Basic Functions � Simulation; Debug and Verification �

Debug and Performance.

6.2.12.2 Double-click the component or select it and click "Add..." to add it to the system. The

System Peripheral ID parameter editor will open.

6.2.12.3 Edit the 32 bit System ID to any value you like, or use 0x00001234.

6.2.12.4 Select Finish and ignore the errors.

MAX1000 P a g e | 28 www.arrow.com

Nios II Soft Core Lab August 2017

6.2.12.5 Rename the component to “sys_id”.

6.2.12.6 In the clock column, select pll_c0 as the Clock Input.

6.2.12.7 Connect the control_slave of the <sys_id> to the data_master of the <nios>.

6.2.12.8 At this point, there are 9 components in the system and should look as follows:

MAX1000 P a g e | 29 www.arrow.com

Nios II Soft Core Lab August 2017

6.2.13 Resolve the Errors

At this point, Qsys will report a number of errors referencing unconnected clocks, unconnected

resets, and unconnected Avalon interface because some of the components in your Qsys system

are not fully connected. Once all the interfaces are connected, these errors will disappear.

6.2.13.1 Assign Base Addresses

When the peripherals were added to the system, they we all given the default base address of

0x0000000, so the components now have overlapping addresses. Qsys will report this as an error.

You can manually enter the base addresses in the Base column, or you can let Qsys automatically

assign them. Automatically assign them by selecting: System � Assign Base Addresses.

6.2.13.2 Create Global Reset Network

In some cases, the reset ports of the components may not have been connected. You can

manually connect these ports, or you can let Qsys automatically connect them. Automatically

connect them by selecting: System � Create Global Reset Network.

6.2.13.3 Define the Nios II Reset and Exception Vectors

MAX1000 P a g e | 30 www.arrow.com

Nios II Soft Core Lab August 2017

Like any processor, the Nios II requires memory locations to jump to in the event of a processor

reset or exception within the execution of its code. The reset vector is the memory location to

which the processor jumps on processor reset and the exception vector is the memory location

to which the processor jumps on an exception. These are typically in non-volatile memory and

can be at the same memory location.

6.2.13.3.1 To set these vectors, double-click on the Nios II component <nios>. The Nios II

parameter editor will reopen.

6.2.13.3.2 Click on the Vectors tab and set both the reset vector memory and exception vector

memory to be onchip_ram.s1 from the pull-downs. The offset and vector values may

be different that the image below but will be corrected in a following step.

6.2.13.4 Review message window for remains errors.

At this point there should be no remaining errors in the message window. If there are,

please refer again to the previous steps to resolve them.

MAX1000 P a g e | 31 www.arrow.com

Nios II Soft Core Lab August 2017

6.2.14 Set Interrupt Priorities

The Nios II processor can process up to 32 independent interrupts (IRQs) from various parts of a

system that can be assigned unique priorities. This system only has 3 interrupts and the priorities

will need to be set manually depending on the user’s needs although it can be done automatically

by selecting System � Assign Interrupt Numbers from the Qsys menu as below.

You can also manually set an IRQ priority in Qsys by double clicking the number in the IRQ column

of the System Contents tab and entering the priority (priority 0 is the highest priority. For example,

double click the number in the IRQ column to the right to the "irq" signal in the <spi_lis3dh>

component and type 0. This will give the <spi_lis3dh> component's interrupt the highest priority.

MAX1000 P a g e | 32 www.arrow.com

Nios II Soft Core Lab August 2017

6.2.15 Check the full system

Below is a screenshot of the full Qsys system with all connections visible.

6.2.15.1 Confirm that your Qsys matches the screenshot below.

6.2.15.2 Make sure there are no errors messages in the Messages tab.

MAX1000 P a g e | 33 www.arrow.com

Nios II Soft Core Lab August 2017

6.2.16 Generate the Qsys System

One of the great parts about Qsys is that it generates HDL (hardware description language) code

from the created system so that the internals can be investigated for a better understanding. The

next step is to generate the HDL from the system.

6.2.16.1 Select Generate � Generate HDL… from the Qsys menu or alternately click the

Generate HDL… button on the bottom right of the Qsys window.

6.2.16.2 The Generate window will appear. Select "VHDL" as the synthesis language and "None"

from the simulation model dropdown (Verilog can be used but the top-level file in this

lab is in VHDL). Unselect “Create block symbol file(.bsf)” since this will not needed for

this lab.The generated HDL files will appear in the directory pointed to by the file path

specified under the Output Directory section. Leave this as the default.

MAX1000 P a g e | 34 www.arrow.com

Nios II Soft Core Lab August 2017

6.2.16.3 Click Generate.

Qsys will generate the necessary HDL for synthesis. When the generate process

completes, click Close.

6.2.17 Add the Qsys System to the Quartus Project

The system created in Qsys now needs to be added to your Quartus project so that it can be

instantiated in the top-level design file. You can think of the Qsys system as a module or

component as you would in any other FPGA design. Qsys generates IP "pointer" files for both

synthesis (.qip) and simulation (.sip) that will point Quartus to all the necessary design files

needed to synthesize or simulate the Qsys system. Press OK to close as the .qip file will be added

to the project in the following steps.

6.2.17.1 Open the project files manager: Project � Add/Remove Files in the Project from the

Quartus Prime menu.

6.2.17.2 Browse through the synthesis directories:

(it should be <project_directory>/nios_sys/synthesis/) and select nios_sys.qip.

MAX1000 P a g e | 35 www.arrow.com

Nios II Soft Core Lab August 2017

6.2.17.3 Click "Add" to add the .qip file to the project. Click "Apply" and "OK".

6.2.18 Instantiate the Embedded System Component in the top-level entity

Having done the above steps, we will need to instantiate our Qsys component in our top-level

entity.

6.2.18.1 In the Qsys window, select Generate � Show Instantiation Template…

MAX1000 P a g e | 36 www.arrow.com

Nios II Soft Core Lab August 2017

6.2.18.2 Select VHDL as the HDL Language. The following template will be shown which can

be easily copied into your project, saving you valuable time.

6.2.18.3 There are two parts that would need be copied to the top-level entity “nios_lab_top”.

• nios_sys Component Declaration (highlighted in red)

Copy this section and paste in the architecture section of “nios_lab_top” before

the word begin. There should be a commented area indicating where exactly.

• nios_sys Component Instantiation (highlighted in blue)

Copy this section and paste in the architecture section of “nios_lab_top” after

the word begin. There should be a commented area indicating where exactly.

MAX1000 P a g e | 37 www.arrow.com

Nios II Soft Core Lab August 2017

Top-level entity Qsys component declaration areas:

MAX1000 P a g e | 38 www.arrow.com

Nios II Soft Core Lab August 2017

6.2.19 Compile the Quartus Prime Project

With the hardware design complete, a few device settings need to be changed before the project

can be compiled to create a configuration file. Those settings should have been already set in the

project files, but would be beneficial to double-check and learn their importance.

6.2.19.1 Open the device settings window from Assignments � Device… and click “Device and

Pin Options”.

6.2.19.2 In the General Category make sure the settings match the following picture.

- “Enable DEV_CLRn”: option not trivial as that pin is tied to Vcc. If Vcc drops low, this will reset

the registers of the device.

- “Enable nCONFIG,nSTATUS,and CONF_DONE pins”: nCONFIG is tied to RESET_n. If option is

enabled, it will reset the configuration when the RESET_n button is pressed. Disable the

option to use RESET_n as an input only and external reset for the embedded system.

MAX1000 P a g e | 39 www.arrow.com

Nios II Soft Core Lab August 2017

6.2.19.3 Under the Configuration category, check that “Single Uncompressed Image with

Memory Initialization (256Kbits UFM) is set as the Configuration mode and ensure the

other settings match the following:

6.2.19.4 Start the compilation by selecting Processing � Start Compilation or double-click

Compile Design in the Tasks window.

MAX1000 P a g e | 40 www.arrow.com

Nios II Soft Core Lab August 2017

6.2.19.5 After few minutes the compilation should complete without any errors.

6.2.20 Download Configuration File to MAX1000

Now that hardware design is complete and has been converted into a configuration file, the

MAX100 board needs to be programmed.

6.2.20.1 Open the Quartus Prime Programmer from Tools � Programmer or double-click on

Program Device (Open Programmer) from the Tasks window. Since the MAX1000

board isn’t connected yet, the Programmer should show a blank configuration.

Note: With the newer releases of Quartus, the programming file .sof might already been added in

the Programmer by default.

MAX1000 P a g e | 41 www.arrow.com

Nios II Soft Core Lab August 2017

6.2.20.2 Connect your MAX1000 board to your PC using a USB cable. Since the Arrow USB

Blaster should be already installed, the Window’s Device Manager should display the

following entries (port number may differ depending on your PC):

If not, please refer to MAX1000 User Guide for information on how to install the drivers properly.

You should see the green LED power on, indicating 3.3V applied voltage.

6.2.20.3 In the Programmer window, click “Hardware Setup..” and double-click the “Arrow-USB-

BLASTER” entry in the Hardware panel. The “Currently selected hardware” drop-down

box should display Arrow-USB-Blaster [USB0]. Depending on your PC, the port number

may differ.

6.2.20.4 Click Close.

MAX1000 P a g e | 42 www.arrow.com

Nios II Soft Core Lab August 2017

6.2.20.5 If the configuration file has been added by default, you can skip this step.

To add the configuration file, click “Add File..” and navigate through

<project_directory>/output_files/ in you compilation directory. Open “nios_lab_top.sof” file.

6.2.20.6 Make sure the Programmer shows the correct file and the correct part in the JTAG

chain as shown below:

MAX1000 P a g e | 43 www.arrow.com

Nios II Soft Core Lab August 2017

6.2.20.7 Make sure the Program/Configure checkbox is checked and click Start to program the

MAX1000. You should see the CONF_D (red LED) toggle briefly to indicate that the

configuration is complete and the Progress bar should reach 100% (Successful).

MAX1000 P a g e | 44 www.arrow.com

Nios II Soft Core Lab August 2017

6.3 Build the Software Design

Overview: In this section, you will use the Nios II Software Build Tools (SBT) for Eclipse to

quickly create a board support package (BSP) and a C software application to run

on the Nios II processor you implemented in the previous step. The software has

already been provided for you in the lab files.

6.3.1 Start the Nios II Software Build Tools for Eclipse

6.3.1.1 From the main Quartus Prime window, start SBT from Tools � Nios II Software Build

Tools for Eclipse.

MAX1000 P a g e | 45 www.arrow.com

Nios II Soft Core Lab August 2017

6.3.1.2 The Eclipse Workspace Launcher will open. Click “Browse…” and create a folder titled

eclipse_workstation in your lab directory to use in the software directory for the project.

Click “OK”.

6.3.2 Create a New Software Project

Now that Eclipse has a workstation, a new software application project and BSP can be created

for your hardware system.

6.3.2.1 Once Eclipse opens the workbench in the Nios II prospective, select File � New � New

II Application and BSP from Template as shown below. This is an easy way to create a BSP

and application together in a few easy steps.

The BSP uses the Qsys- generated .sopcinfo file to import the necessary settings from the

hardware project to the software project so that your application can run on the Nios II processor.

It allows Eclipse to build the system library drivers and generate system-specific macros for the

custom Qsys system with the Nios II processor.

MAX1000 P a g e | 46 www.arrow.com

Nios II Soft Core Lab August 2017

6.3.2.2 Click “…” to select the nios_sys.sopcinfo from your project directory and name the project

nios_lab. Make sure you select Blank Project from the Templates section as the software

sources will be added in a later step. Make sure the settings match the screenshot below

and select “Finish”.

Note: Your file path may differ from the one shown below.

6.3.2.3 Eclipse will create two directories in the workspace; one for the application project and

one for the BSP. The application directory (nios_lab) is currently empty while the BSP

directory (nios_lab_bsp) contains software drivers, a system.h header file, initialization

source code and other software infrastructure.

MAX1000 P a g e | 47 www.arrow.com

Nios II Soft Core Lab August 2017

6.3.3 Add Source Code to the Project

The C source file have been provided for you in this lab. All that needs to be done is to copy it to

your workspace.

6.3.3.1 From Windows Explorer, navigate to your main project directory. There you will find a file

named main.c which you will need to copy to this project.

6.3.3.2 Select the main.c file and drag it into the nios_lab directory in Eclipse. Select the “Copy

files” option in the pop-up and click “OK”.

Note: Since we are copying the files instead of linking to them, any changes that you would want

to make to the source files need to be made to the versions inside the nios_lab directory.

Otherwise, the changes will not be compiled.

You should now see the new file appear under the nios_lab project in the Project Explorer.

6.3.3.3 In some cases, the familiar windows “do not enter” symbol appears indicating you cannot

add files using the previous method. In this case, you can copy files using Windows

Explorer. Copy the source file from the project directory into the nios_lab folder. In

Eclipse, you need to right-click your nios_lab project and click Refresh.

6.3.3.4 Using this method, the C-source files added to the project may not be automatically added

to the Makefile. You will notice a white dot or green dot besides the source file. For the

C-files, you need to make this dot green by right-clicking each .c file and selecting: Add to

Nios II Build.

6.3.4 Configure the Board Support Package

The Board Support Package specifies the properties of the software system and needs to be

configured for the software to execute correctly. Those properties include setting the stdin,

stdout and stderr interfaces, memory allocation for the heap and stack, drivers, and wether an

operating system will be used.

6.3.4.1 Right-click on the nios_lab_bsp project and select Nios II � BSP Editor… from the pop-up

window.

MAX1000 P a g e | 48 www.arrow.com

Nios II Soft Core Lab August 2017

6.3.4.2 The Nios II BSP Editor will open. In the Common settings under the Main tab, ensure the

settings are configured as below.

Notice that since there is no operating system in this lab, the stdout, stdin, and stderr messages

are reported through the JTAG UART which you will be able to see in the Nios II Console in Eclipse.

On-chip memory will be used processor code storage, data storage, the exception, and interrupt

stack.

Feel free to explore the BSP editor. The Drivers tab gives the user control over what drivers are

built into the BSP. The Linker Script tab provides a mechanism to adjust what memory regions are

utilized for certain purposes. We only have one memory in this system but for systems with

multiple memory locations (i.e. DDR3, flash, and on-chip ram), this is particularly useful.

6.3.4.3 Click “Generate” button to update the BSP and select “Exit” to close it once the process is

complete.

6.3.4.4 There are a few more BSP settings to edit. Right-click on the nios_lab_bsp project and

select Properties from the pop-up menu.

6.3.4.5 In the Properties window, select the Nios II BSP Properties tab. It may take a moment to

load the settings.

6.3.4.6 To keep the software footprint small so it fits our device, enable “Reduced device drivers”

and “Small C library” options. As there is no C++ code, disable the “Support C++” option.

MAX1000 P a g e | 49 www.arrow.com

Nios II Soft Core Lab August 2017

The BSP Properties should match the following:

6.3.4.7 Select “Apply” and then click “OK” to exit the Properties Window.

6.3.5 Build the Software

With all of the appropriate settings configured, you can now build the BSP and software project

using the next two steps to produce an executable and linked format (.elf) file to run on the

MAX1000 board.

6.3.5.1 Right-click on the nios_lab_bsp project and select Build Project from the pop-up menu to

build the BSP.

MAX1000 P a g e | 50 www.arrow.com

Nios II Soft Core Lab August 2017

You can have the build process run in the background by from the pop-up window if you wish.

You can observe the process commands in the Console window.

6.3.5.2 Repeat the procedure for the application. Right-click the nios_lab project and select Build

Project from the pop-up menu.

6.3.6 Run the Application on the MAX1000 Board

Overview: Now that you have an executable, you can download the application to the on-

chip memory in the MAX10 and the Nios II processor will execute.

6.3.7 Download the Executable to the MAX1000

First, a target configuration will need to be established with the MAX1000 board so that Eclipse

can download the code and communicate with the board.

6.3.7.1 Right-click on the nios_lab software project and select Run As � Nios II Hardware.

This will rebuild the software project to create an up-to-date executable and download the code

into the memory of the MAX10. The debugger then resets the Nios II and it begins executing the

code.

MAX1000 P a g e | 51 www.arrow.com

Nios II Soft Core Lab August 2017

Note: If a Run Configuration dialogue appears, you may need to click the Target Connection tab

and scroll to the right. Click "Refresh Connections" and the appropriate connection to the MAX100

should appear as below. Then click "Run".

In the “System ID Properties” you can verify if the target device has the matching Device ID that

we previously set Qsys for System Device ID.

6.3.7.2 After a few seconds, the Nios II Console should open at the bottom of the Eclipse:

After this message, the software downloaded to MAX1000 will obtain the y-axis data from its on-

board accelerometer and toggle it’s LEDs accordingly to the tilt level. Every 10ms the y-axis value

will be sent to Nios II Console window.

MAX1000 P a g e | 52 www.arrow.com

Nios II Soft Core Lab August 2017

6.3.7.3 Next Steps

Having successfully downloaded a configuration hardware image containing a Nios II processor to

the FPGA and a software executable, you can now experiment with your own application ideas.

The design flow would be the same but you are able to add more components/peripherals to the

embedded system in Qsys and expand the system’s capabilities.

There are various methods to try other applications. Here are some optional steps:

1) Edit existing C-source file.

2) Create new Qsys with additional components along with a new software project following

the steps used in this lab.

6.3.7.4 Non-volatile Configuration

In this lab, a volatile configuration(.sof) was created for the MAX10, meaning that on power off

all configurations are erased. If you wish to create a non-volatile configuration file that includes

the hardware and software files in one file for the MAX10 please refer to AN730 for details.

Link: https://www.altera.com/en_US/pdfs/literature/an/an730.pdf

CONGRATULATIONS! YOU HAVE SUCCESSFULLY COMPLETED THE NIOS LAB!

MAX1000 P a g e | 53 www.arrow.com

Nios II Soft Core Lab August 2017

7. Revisions

Version Change Log Date of Change
V1.0 Initial Version 17/08/2017

MAX1000 P a g e | 54 www.arrow.com

Nios II Soft Core Lab August 2017

8. Legal Disclaimer

ARROW ELECTRONICS

EVALUATION BOARD LICENSE AGREEMENT

By using this evaluation board or kit (together with all related software, firmware, components, and

documentation provided by Arrow, “Evaluation Board”), You (“You”) are agreeing to be bound by the terms and

conditions of this Evaluation Board License Agreement (“Agreement”). Do not use the Evaluation Board until

You have read and agreed to this Agreement. Your use of the Evaluation Board constitutes Your acceptance of

this Agreement.

PURPOSE

The purpose of this evaluation board is solely intended for evaluation purposes. Any use of the Board beyond

these purposes is on your own risk. Furthermore, according the applicable law, the offering Arrow entity

explicitly does not warrant, guarantee or provide any remedies to you with regard to the board.

LICENSE

Arrow grants You a non-exclusive, limited right to use the enclosed Evaluation Board offering limited features

only for Your evaluation and testing purposes in a research and development setting. Usage in a live environment

is prohibited. The Evaluation Board shall not be, in any case, directly or indirectly assembled as a part in any

production of Yours as it is solely developed to serve evaluation purposes and has no direct function and is not

a finished product.

EVALUATION BOARD STATUS

The Evaluation Board offers limited features allowing You only to evaluate and test purposes. The Evaluation

Board is not intended for consumer or household use. You are not authorized to use the Evaluation Board in any

production system, and it may not be offered for sale or lease, or sold, leased or otherwise distributed for

commercial purposes.

OWNERSHIP AND COPYRIGHT

Title to the Evaluation Board remains with Arrow and/or its licensors. This Agreement does not involve any

transfer of intellectual property rights (“IPR) for evaluation board. You may not remove any copyright or other

proprietary rights notices without prior written authorization from Arrow or it licensors.

RESTRICTIONS AND WARNINGS

Before You handle or use the Evaluation Board, You shall comply with all such warnings and other instructions

and employ reasonable safety precautions in using the Evaluation Board. Failure to do so may result in death,

personal injury, or property damage.

You shall not use the Evaluation Board in any safety critical or functional safety testing, including but not limited

to testing of life supporting, military or nuclear applications. Arrow expressly disclaims any responsibility for

such usage which shall be made at Your sole risk.

WARRANTY

Arrow warrants that it has the right to provide the evaluation board to you. This warranty is provided by Arrow

in lieu of all other warranties, written or oral, statutory, express or implied, including any warranty as to

merchantability, non-infringement, fitness for any particular purpose, or uninterrupted or error-free operation,

all of which are expressly disclaimed. The evaluation board is provided “as is” without any other rights or

warranties, directly or indirectly.

You warrant to Arrow that the evaluation board is used only by electronics experts who understand the dangers

of handling and using such items, you assume all responsibility and liability for any improper or unsafe handling

or use of the evaluation board by you, your employees, affiliates, contractors, and designees.

MAX1000 P a g e | 55 www.arrow.com

Nios II Soft Core Lab August 2017

LIMITATION OF LIABILITIES

In no event shall Arrow be liable to you, whether in contract, tort (including negligence), strict liability, or any

other legal theory, for any direct, indirect, special, consequential, incidental, punitive, or exemplary damages

with respect to any matters relating to this agreement. In no event shall arrow’s liability arising out of this

agreement in the aggregate exceed the amount paid by you under this agreement for the purchase of the

evaluation board.

IDENTIFICATION

You shall, at Your expense, defend Arrow and its Affiliates and Licensors against a claim or action brought by a

third party for infringement or misappropriation of any patent, copyright, trade secret or other intellectual

property right of a third party to the extent resulting from (1) Your combination of the Evaluation Board with

any other component, system, software, or firmware, (2) Your modification of the Evaluation Board, or (3) Your

use of the Evaluation Board in a manner not permitted under this Agreement. You shall indemnify Arrow and its

Affiliates and Licensors against and pay any resulting costs and damages finally awarded against Arrow and its

Affiliates and Licensors or agreed to in any settlement, provided that You have sole control of the defense and

settlement of the claim or action, and Arrow cooperates in the defense and furnishes all related evidence under

its control at Your expense. Arrow will be entitled to participate in the defense of such claim or action and to

employ counsel at its own expense.

RECYCLING

The Evaluation Board is not to be disposed as an urban waste. At the end of its life cycle, differentiated waste

collection must be followed, as stated in the directive 2002/96/EC. In all the countries belonging to the European

Union (EU Dir. 2002/96/EC) and those following differentiated recycling, the Evaluation Board is subject to

differentiated recycling at the end of its life cycle, therefore: It is forbidden to dispose the Evaluation Board as

an undifferentiated waste or with other domestic wastes. Consult the local authorities for more information on

the proper disposal channels. An incorrect Evaluation Board disposal may cause damage to the environment and

is punishable by the law.

